

EXTRACORPOREAL LIFE SUPPORT FOR REFRACTORY IN-HOSPITAL AND OUT-OF-HOSPITAL CARDIAC ARREST: ARE THE OUTCOMES REALLY DIFFERENT? A 10-YEAR EXPERIENCE

Pozzi M^1 , Armoiry X^2 , Koffel C^3 , Pavlakovic I^3 , Lavigne F^3 , Schweizer R^3 , Fellahi JL^3 , Hugon-Vallet E^4 , Flagiello M^1 , Adamou K^1 , Grinberg D^1 , Generali T^1 , Obadia JF^1

¹Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, Lyon, France

²University of Warwick, Warwick Medical School, Division of Health Sciences, Coventry, England

³Department of Anesthesia and ICU, "Louis Pradel" Cardiologic Hospital, Lyon, France

⁴Department of Cardiology, "Louis Pradel" Cardiologic Hospital, Lyon, France

CONFLICT OF INTEREST DISCLOSURE

EUROPEAN UNION OF MEDICAL SPECIALISTS (UEMS) EUROPEAN ACCREDITATION COUNCIL ON CME (EACCME®)

Rue de L'Industrie 24, BE- 1040 BRUSSELS T + 32 2 649 51 64 - F + 32 2 640 37 30 https://eaccme.uems.eu - accreditation@uems.eu

Conflict of Interest Disclosure Form

NAME: Matteo POZZI

AFFILIATION: Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, Lyon, France

In accordance with criterion 14 of document LEMS 2016/30 "EACCME" criteria for the Accreditation of Live Educational Events (LEES)", all declarations of potential or actual conflicts of interest, whether due to a financial or other relationship, must be provided to the EACCME" upon submission of the application. Declarations also must be made readily available, either in printed form, with the programme of the LEE, or on the website of the organiser of the LEE. Declarations must include whether any fee, honorarium or arrangement for reimbursement of expenses in relation to the LEE has been provided.

DISCLOSURE

☑ I have no potential conflict of interest to report

☐ I have the following potential conflict(s) of interest to report

Type of affiliation / financial interest

Name of commercial company

Receipt of grants/research supports:

Receipt of honoraria or consultation fees:

Participation in a company sponsored speaker's bureau:

Stock shareholder:

Spouse/partner:

Other support (please specify):

Signature:

Kotto Boxi

Date: 23/05/2018

UEMS_{BISM} – Union Européenne des Médecins Spécialistes IBAN BE28 0001 3283 3820 | BIC (SWIFT) BPOTBEB1 | VAT n° BE 0469.067.848

CONFLICT OF INTEREST TO DISCLOSE: None

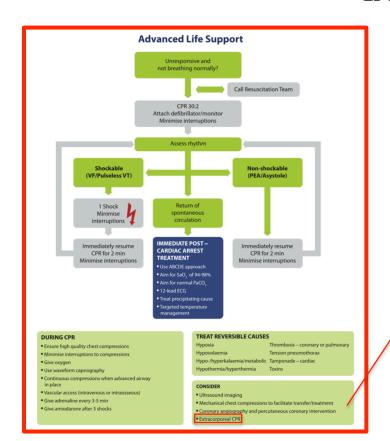
INTRODUCTION

<u>Refractory cardiac arrest</u> is defined by the lack of return of spontaneous circulation within a period of at least 30 min of CPR under medical direction in the absence of pre-existing hypothermia

Riou et al.

Ann Fr Anesth Reanim 2009;28:182-90

IN-HOSPITAL CARDIAC ARREST


(IHCA)

OUT-OF-HOSPITAL CARDIAC ARREST

(OHCA)

INTRODUCTION

Extracorporeal CPR (eCPR) should be considered as a rescue therapy for those patients in whom initial ALS measures are unsuccessful and/or to facilitate specific interventions (e.g. coronary angiography and percutaneous coronary intervention (PCI) or pulmonary thrombectomy for massive pulmonary embolism).

INTRODUCTION

CONFERENCE REPORTS AND EXPERT PANEL

Position paper for the organization of ECMO programs for cardiac failure in adults

ECPR

ndications

Failure to achieve ROSC despite 15 min of conventional CPR

Cardiac arrest presumed to be of cardiac origin (including pulmonary embolism)

Contraindications

Relative

Advanced age

Prolonged or unknown time from onset of cardiac arrest to initiation of CPR

Absolute

Acute aortic dissection or severe aortic insufficiency

Underlying end-stage heart failure if long-term heart replacement therapies will not be considered

Any non-cardiac condition or organ dysfunction that would limit the likelihood of overall benefit from ECPR, such as severe, irreversible brain injury or untreatable metastatic cancer

Inconsistent with patient's previously expressed goals of care

BACKGROUND

ECLS for IHCA

Author	[Reference] Pa	atients (n.)	Survival CPC 1-2
Massetti	Ann Thorac Surg 2005;79:178-83	35	20.0%
Chen	Lancet 2008;372:554-61	59	23.7%
Shin	Crit Care Med 2011;39:1-7	85	28.2%
Bednarczyk	Resuscitation 2014;85:1713-9	22	45.4%
Peigh	J Thorac Cardiovasc Surg 2015;150:1344	-9 23	30.4%
Ellouze	Artif Organs 2018;42:15-21	43	20.9%

Outcomes of ECLS for IHCA - Encouraging

Satisfactory Encouraging Homogeneous

Survival CPC 1-2: 20-45%

BACKGROUND

ECLS for OHCA

Author	[Reference] P:	atients (n.)	Survival CPC 1-2
Le Guen	Crit Care 2011;15:R29	51	3.9%
Mégarbane	Resuscitation 2011;82:1154-61	47	2.1%
Maekawa	Crit Care Med 2013;41:1186-96	53	15.1%
SAVE-J Study	Resuscitation 2014;85:762-8	234	13.7%
Pozzi	Int J Cardiol 2016;204:70-6	68	4.4%
CHEER Trial	J Thorac Cardiovasc Surg 2015;150:1344	-9 11	45.4%
Choi	Resuscitation 2016;99:26-32	320	9.1%
Rousse	Artif Organs 2016;40:904-9	32	3.1%

Outcomes of ECLS for OHCA

Survival CPC 1-2: Disappointing results

OBJECTIVE

To evaluate the results of ECLS support for refractory cardiac arrest and compare the outcomes between IHCA and OHCA patients at a single-centre experience

MATERIALS and METHODS

Study design - Patient population

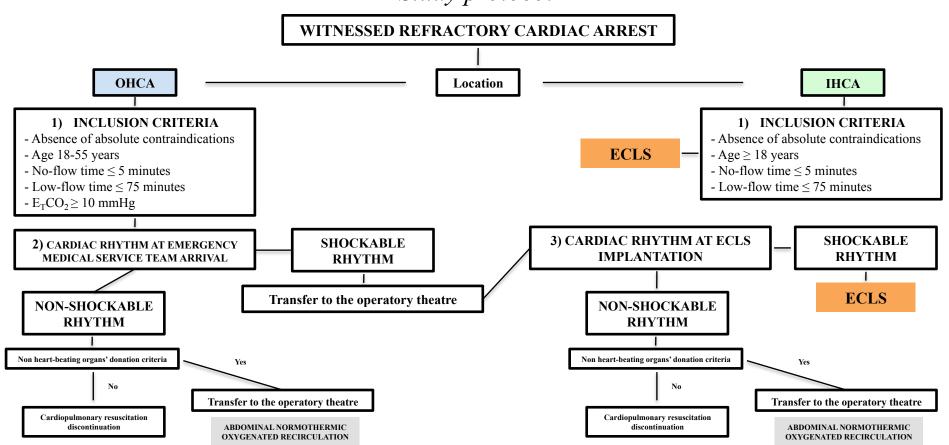
Observational analysis of our prospective database

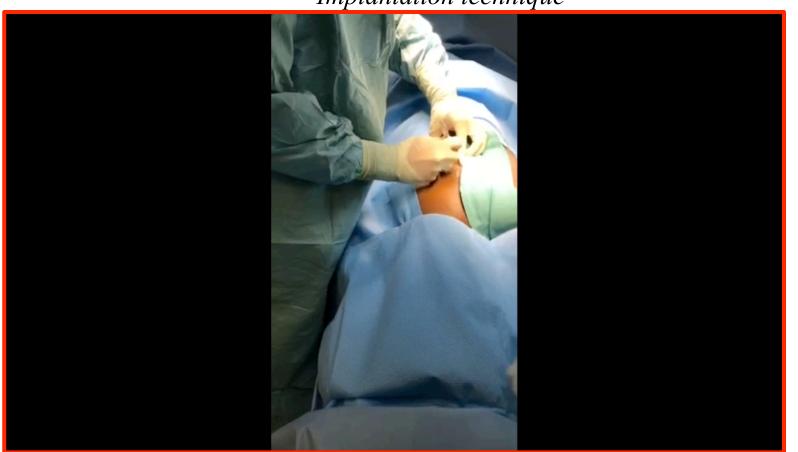
Adult patients supported with ECLS for witnessed, refractory IHCA or OHCA

01/01/1997 - 31/12/2016

449 ECLS

131 (29.2%) ECLS for refractory cardiac arrest




MATERIALS and METHODS

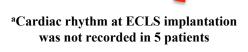
Study protocol

MATERIALS and METHODS

Implantation technique

RESULTS

Baseline characteristics


131 patients

Mean age: $43.2 \pm 12.8 (18 - 76)$ years

Male sex: 71.8%

OVEDATI

	OVERALL	ı IHCA	OHCA	p-value
Age, years	43.2 ± 12.8	46.2 ± 13.5	41.7 ± 12.2	0.054
Male sex, n (%)	84 (71.8)	29 (64.4)	65 (75.6)	0.179
Cardiovascular risk factors, n				
(%)				
Hypertension	16 (12.2)	5 (11.1)	11 (12.8)	0.780
Diabetes	10 (7.6)	6 (13.3)	4 (4.7)	0.091
Dyslipidemia	10 (7.6)	5 (11.1)	5 (5.8)	0.278
Active smoking	36 (27.5)	11 (24.4)	25 (29.1)	0.573
^a Rhythm at ECLS				0.493
implantation, n (%)				
Shockable rhythm	38 (29.0)	11 (26.2)	27 (32.1)	
Non-shockable rhythm	88 (67.2)	31 (73.8)	57 (67.9)	

RESULTS

Baseline biological profile

	O	1 0	
IHCA	(OHCA	

 11.2 ± 6.9

 7.1 ± 5.2

 7.32 ± 0.13

BUN, mmol/l

ASAT, U/l

ALAT, U/l

Lactates

pН

Bilirubin, µmol/l

Low-flow time, min

p-value 0.001

0.034 < 0.001 < 0.001 < 0.001

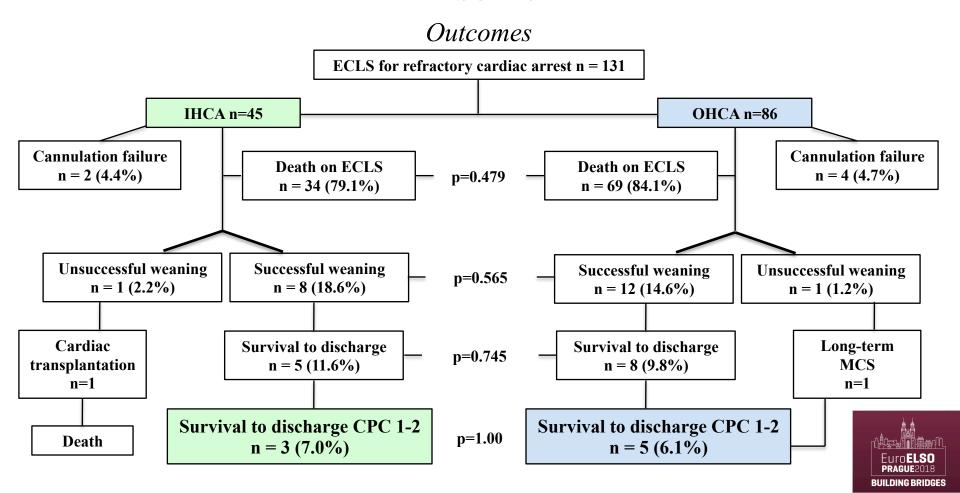
< 0.001

< 0.001

 6.3 ± 2.3 30.8±36.2 9.5 ± 6.5 1353.3±2537.0 821.8 ± 788.8 851.3±1462.7 459.5±456.2 46.9 ± 19.0 85.3±23.0

 16.0 ± 5.5

 7.08 ± 0.21


RESULTS

Cause of cardiac arrest

	OVERALL	IHCA	OHCA	p-value
Cause of cardiac arrest, n (%)				0.005
Acute coronary syndrome	38 (29.0)	7 (15.6)	31 (36.0)	
Cardiomyopathy	18 (13.7)	7 (15.6)	11 (12.8)	
Pulmonary embolism	5 (3.8)	2 (4.4)	3 (3.5)	
Drug intoxication	4 (3.1)	2 (4.4)	2 (2.3)	
Aortic dissection	6 (4.6)	1 (2.2)	5 (5.8)	
Postcardiotomy	9 (6.9)	9 (20)	0	
Various	15 (11.5)	10 (22.2)	5 (5.8)	
Unknown	36 (27.5)	7 (15.6)	29 (33.7)	

RESULTS

DISCUSSION

Survival CPC 1-2 < 5%

Rousse et al. 110 min. (3.1%)

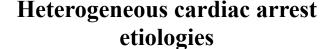
Le Guen et al. 120 min. (3.9%)

Mégarbane et al. 155 min. (2.1%)

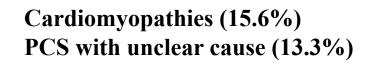
LOW-FLOW

DISCUSSION

ECLS for IHCA


Lower survival to hospital discharge CPC 1-2 than previous published series

Severe impairment of the renal and hepatic functions



Underlying long-standing illness

Drug intoxication (4.4%) Acute coronary syndrome (15.6%)

DISCUSSION

ECLS for IHCA vs. OHCA

Author	[Reference]	Survival CPC 1-2 IHCA vs. OHCA	p-value
Kagawa	Resuscitation 2010;81:968-73	26.3% vs. 10.2%	0.07
Wang	Resuscitation 2014;85:1219-24	25.1% vs. 25.8%	>0.05
Dennis	Int J Cardiol 2017;231:131-6	69% vs. 31%	0.87
Ellouze	Artif Organs 2018;42:15-21	20.9% vs. 27.2%	0.76

Avalli Resuscitation 2012;83:579-83	45.8% vs. 5.5%	<u>0.005</u>
-------------------------------------	----------------	--------------

CONCLUSION

ECLS could be considered an ultimate solution in refractory cardiac arrest patients who failed conventional cardiopulmonary resuscitation

IHCA and OHCA patients experienced the same survival to hospital discharge with good neurological outcome after ECLS support

The results of ECLS for refractory OHCA are mainly limited by the low-flow duration

In the setting of refractory IHCA, a better selection of patients is mandatory to improve outcomes and avoid futile support

